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FINAL REPORT 

Significant progress was made on the time-dependent problem involving 

the equation 

u  - iu - V • (W'£|!"|J Vu)=f inn c R2 

tt    t        ( I Vu | 

which models antiplane shear deformations of certain viscoelastic solids. 

The nonlinear function w  is a double well potential. 

We derived an energy preserving implicit time discretization scheme and 

implemented it in two space dimensions to study numerically the long time 

behavior of the solution.  This scheme was analyzed for the one-dimensional 

1 
problem with Soren Jensen.  Since this was our first computation with this 

problem we kept the method as simple as possible; fixed point iteration was 

used to solve the nonlienar systems and preconditioned conjugate gradients 

for the linear system.  Previously, optimal order error estimates were 

derived in collaboration with Lars B. Wahlbin of Cornell for the semi- 

discrete scheme (Discretized in space by finite elements).  Using our code we 

verified these error estimates.  We also computed solutions in the case where 

o>  was a double well potential and where it was the convexification of the 

well.  In the convexified case u tended to a steady state pattern that was 

2 
identical to the one found in Goodman, Kohn, and Reyna who computed 

solutions in the static case.  In the nonconvex situation u  tended to nearly 

the same solution.  We plan to write up both the theoretical and numerical 

results and submit them for publication soon. 

Behaviour in the large of numerical solutions to one-dimensional nonlinear 
viscoelasticity by continuous time Galerkin methods (Accepted for publication 
by Comp.   Meth.   Appl.   Nech.   Eng. ) 
2 
Numerical Study of a relaxed variational problem from optimal design, Comp. 

Meth.   Appl.   Mech.   Eng.,   57(1986) 107-127. 



We began testing the continuous time Galerkin (CTG) method by 

implementing two numerical schemes on the generalized Kortewig-de Vries (KDV) 

equation 

u + f(u)    + £U       = 0 
t X        XXX 

5 7 where, typically, f(u) = u    or f(u)  = u .  Instead of the usual periodic 

3 
boundary conditions (BC) we used wavemaker BC as suggested to us by Jerry 

Bona of Perm State.  We intend to use our codes to study the behavior of the 

solutions.  We will begin by investigating the stability of solitary waves. 

The numerical schemes we are using are described in French and 

4 
Schaeffer .  One is very similar to the Crank-Nicolson method and would 

2 
conserve the L    norm of the solution in the periodic case.  The other is 

based on a splitting of the equation suggested by Winther and will conserve 

the third invariant in the periodic case. 

Another extension of our work on CTG methods is in the area of space- 

6 7 
time finite element methods. *  Here one uses finite elements to discretize a 

domain that includes the time dimension rather than using finite differences 

in time and some other method is space as is usually done.  The key advantage 

of the space-time approach is it allows unstructured meshes in time which 

permits efficient mesh refinement.  A disadvantage of these schemes is they 

3 
J. Bona and R. Winther, The Kortewig-de Vries equation in the quarter plane, 
continuous dependence results, Differential and Integral Equationst   2(1989) 
228-250. 
4 
Continuous finite element methods which preserve energy properties nonlinear 
problems (Accepted for publication by Appl.   Math.   Comp.) 

A conservative finite element method for the Kortewig-de Vries equation, 
Math Comp.   34(1980) 23-43. 

T.J.R. Hughes and E.M. Hilbert, Space-time finite element methods for 
elastochynamics:  formulations and error estimates, Comp.   Meth.   Appl.   Mech. 
Eng.,   66(1988) 339-363. 
7 
C. Johnson, Numerical Solution of Partial Differential Equations by the 

Finite Element Method,   Cambridge University Press, (Section 9.9). 



are less stable - at least theoretically - and usually require the 

introduction of certain terms that enhance stability without compromising 

accuracy.  Thus the derivation of algorithms can be difficult.  Currently we 

are attempting to derive space-time schemes for dispersive wave equations 

such as the KdV and Schrödinger equations.  We plan to write a computer 

program that will track a single soliton solution accurately and efficiently. 


